A speed feedback control strategy for car-following model
Wen-Xing Zhu and
Li-Dong Zhang
Physica A: Statistical Mechanics and its Applications, 2014, vol. 413, issue C, 343-351
Abstract:
A speed feedback control mechanism was introduced into the system to improve the dynamical performance of the traffic flow. The modern control theory was used to analyze the stability of the system. It is found that the stability region varies with the feedback coefficient proportionally. In addition, the unit step responses in time domain and phase–frequency curves in frequency domain were given with different feedback coefficients in step response diagram and Bode diagram respectively. The overshoot and phase margins are inversely proportional to the speed feedback coefficients in an underdamped condition. The simulations were conducted to verify the validity of the improvement. The conclusion can be drawn that the analytical result and the simulation result are in good agreement with each other.
Keywords: Car-following model; Speed feedback control; Damping ratio (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114005998
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:413:y:2014:i:c:p:343-351
DOI: 10.1016/j.physa.2014.07.030
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().