EconPapers    
Economics at your fingertips  
 

Periodic layer formation in the growth of dilute binary alloys

Roberto E. Rozas, Alexander L. Korzhenevskii, Richard Bausch and Rudi Schmitz

Physica A: Statistical Mechanics and its Applications, 2014, vol. 413, issue C, 394-399

Abstract: The oscillatory growth of a dilute binary alloy in rapid directional solidification has recently been described by a nonlinear oscillator equation, assuming a uniform diffusion constant of the solute component in both phases. In a more realistic model with a vanishing diffusion coefficient in the solid phase this leads to the formation of durable layers of alternating solute concentrations. Due to the Mullins–Sekerka instability, the high-concentration layers commonly feature a dendritic microstructure. We conjecture that the mechanism behind this so-called banded-structure effect also applies to some of the quite independently discussed striation phenomena in a large number of general crystal-growth processes.

Keywords: Crystal growth; Rapid solidification; Banded structures; Striation; Phase-field model; Capillary-wave model (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114005044
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:413:y:2014:i:c:p:394-399

DOI: 10.1016/j.physa.2014.06.029

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:413:y:2014:i:c:p:394-399