DNA denaturation in the rodlike polyelectrolyte model
C.B. Passos,
P.S. Kuhn and
M.C. Barbosa
Physica A: Statistical Mechanics and its Applications, 2014, vol. 413, issue C, 481-488
Abstract:
The denaturation of the DNA is analyzed using an analytic model. The DNA molecules are described in the Primitive Model of Polyelectrolytes (PMP), where the polyelectrolyte molecules are cylinders with charged sites. We show that the DNA stabilization arises as the result of the competition between the electrostatic repulsion of the phosphate groups and the attractive forces of the H-bonds. We also show that the addition of salt in the system screens the electrostatic interactions and favors the double strand configuration.
Keywords: Polyelectrolytes; DNA denaturation; Charged systems; Complex fluids (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114005342
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:413:y:2014:i:c:p:481-488
DOI: 10.1016/j.physa.2014.06.059
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().