EconPapers    
Economics at your fingertips  
 

Potts model partition functions on two families of fractal lattices

Helin Gong and Jin, Xian’an

Physica A: Statistical Mechanics and its Applications, 2014, vol. 414, issue C, 143-153

Abstract: The partition function of q-state Potts model, or equivalently the Tutte polynomial, is computationally intractable for regular lattices. The purpose of this paper is to compute partition functions of q-state Potts model on two families of fractal lattices. Based on their self-similar structures and by applying the subgraph-decomposition method, we divide their Tutte polynomials into two summands, and for each summand we obtain a recursive formula involving the other summand. As a result, the number of spanning trees and their asymptotic growth constants, and a lower bound of the number of connected spanning subgraphs or acyclic root-connected orientations for each of such two lattices are obtained.

Keywords: Potts model; Tutte polynomial; Spanning tree; Asymptotic growth constant; Connected spanning subgraph; The modified Koch graph (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114006190
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:414:y:2014:i:c:p:143-153

DOI: 10.1016/j.physa.2014.07.047

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:143-153