Objective fluxes in a multi-scale continuum description of sparse medium dynamics
Gianfranco Capriz and
Paolo Maria Mariano
Physica A: Statistical Mechanics and its Applications, 2014, vol. 415, issue C, 354-365
Abstract:
We discuss reasons justifying a multi-scale continuum description of sparse media, which do not admit a choice of a representative volume element remaining permanent in time with constant mass. We suggest the choice of objective derivatives for time-varying terms in the balance equations pertinent to the scheme that we analyze, to avoid some problems connected with SO(3)-based changes in observers, which emerge within the setting of the standard theory of gases when we start from it to get continuum models. The scheme discussed here can be reduced to versions of the averaged regularizations of the Navier–Stokes equations. In our approach we have primarily in mind the continuum description of bodies like macro-molecular fluids or granular ones, even if what we propose can be significant in a broader setting.
Keywords: Sparse media; Thermodynamics of fluids; Multi-scale models (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114006906
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:415:y:2014:i:c:p:354-365
DOI: 10.1016/j.physa.2014.08.012
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().