CK-LPA: Efficient community detection algorithm based on label propagation with community kernel
Zhen Lin,
Xiaolin Zheng,
Nan Xin and
Deren Chen
Physica A: Statistical Mechanics and its Applications, 2014, vol. 416, issue C, 386-399
Abstract:
With the rapid development of Web 2.0 and the rise of online social networks, finding community structures from user data has become a hot topic in network analysis. Although research achievements are numerous at present, most of these achievements cannot be adopted in large-scale social networks because of heavy computation. Previous studies have shown that label propagation is an efficient means to detect communities in social networks and is easy to implement; however, some drawbacks, such as low accuracy, high randomness, and the formation of a “monster” community, have been found.
Keywords: Community detection; Online social network; Label propagation; Community kernel; Graph mining (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711400781X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:416:y:2014:i:c:p:386-399
DOI: 10.1016/j.physa.2014.09.023
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().