EconPapers    
Economics at your fingertips  
 

Quantum diffusion: A simple, exactly solvable model

Wim Magnus and Kwinten Nelissen

Physica A: Statistical Mechanics and its Applications, 2015, vol. 417, issue C, 96-101

Abstract: We propose a simple quantum mechanical model describing the time dependent diffusion current between two fermion reservoirs that were initially disconnected and characterized by different densities or chemical potentials. The exact, analytical solution of the model yields the transient behavior of the coupled fermion systems evolving to a final steady state, whereas the long-time behavior is determined by a power law rather than by exponential decay. Similar results are obtained for the entropy production which is proportional to the diffusion current.

Keywords: Quantum evolution; Irreversibility; Quantum diffusion; Power-law decay (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114008085
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:417:y:2015:i:c:p:96-101

DOI: 10.1016/j.physa.2014.09.041

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:417:y:2015:i:c:p:96-101