Community detection by fuzzy clustering
Peng Gang Sun
Physica A: Statistical Mechanics and its Applications, 2015, vol. 419, issue C, 408-416
Abstract:
How to measure the similarity between nodes is of great importance for fuzzy clustering when we use the approach to uncover communities in complex networks. In this paper, we first measure the similarity between nodes in a network based on edge centralities and model the network as a fuzzy relation. Then, two fuzzy transitive rules (Rule I and Rule II) are applied on the relation respectively, by which the similarity information can be transferred from one node to another in the network until the relation reaches a stable state. By choosing different thresholds, our method finally can partition the network into several non-overlapping subgroups. We compare our method with some state of the art methods on the LFR benchmark and real-world networks. We find that our method based on Rule I can correctly identify communities when the similarity between nodes of same groups is greater than that of different groups, while it is just opposite to Rule II. Our method achieves better results than the state of the art methods when the pre-planted communities of the random networks are vaguer.
Keywords: Community detection; Fuzzy transitive rule; Edge centrality (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114008474
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:419:y:2015:i:c:p:408-416
DOI: 10.1016/j.physa.2014.10.009
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().