EconPapers    
Economics at your fingertips  
 

Some properties of the floor field cellular automata evacuation model

Tomasz M. Gwizdałła

Physica A: Statistical Mechanics and its Applications, 2015, vol. 419, issue C, 718-728

Abstract: We study the process of evacuation of pedestrians from the room with the given arrangement of doors and obstacles by using the cellular automata technique. The technique which became quite popular is characterized by the discretization of time as well as space. For such a discretized space we use so-called floor field model which generally corresponds to the description of every cell by some monotonic function of distance between this cell and the closest exit. We study several types of effects. We start from some general features of model like the kind of a neighborhood or the factors disrupting the motion. Then we analyze the influence of asymmetry and size on the evacuation time. Finally we show characteristics concerning different arrangements of exits and include a particular approach to the proxemics effects. The scaling analyses help us to distinguish these cases which just reflect the geometry of the system and those which depend also on the simulation properties. All calculations are performed for a wide range of initial densities corresponding to different occupation rates as described by the typical crowd counting techniques.

Keywords: Cellular automata; Pedestrian evacuation; Floor field model; Scaling (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711400908X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:419:y:2015:i:c:p:718-728

DOI: 10.1016/j.physa.2014.10.070

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:718-728