Probabilistic characterization of nonlinear systems under α-stable white noise via complex fractional moments
G. Alotta and
M. Di Paola
Physica A: Statistical Mechanics and its Applications, 2015, vol. 420, issue C, 265-276
Abstract:
The probability density function of the response of a nonlinear system under external α-stable Lévy white noise is ruled by the so called Fractional Fokker–Planck equation. In such equation the diffusive term is the Riesz fractional derivative of the probability density function of the response. The paper deals with the solution of such equation by using the complex fractional moments. The analysis is performed in terms of probability density for a linear and a non-linear half oscillator forced by Lévy white noise with different stability indexes α. Numerical results are reported for a wide range of non-linearity of the mechanical system and stability index of the Lévy white noise.
Keywords: α-stable white noise; Nonlinear systems; Fractional Fokker–Planck equation; Complex fractional moments (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114009479
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:420:y:2015:i:c:p:265-276
DOI: 10.1016/j.physa.2014.10.091
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().