Simulation and analysis of congestion risk during escalator transfers using a modified social force model
Wenhang Li,
Jianhua Gong,
Ping Yu,
Shen Shen,
Rong Li and
Qishen Duan
Physica A: Statistical Mechanics and its Applications, 2015, vol. 420, issue C, 28-40
Abstract:
The congestion risk during escalator transfers was simulated based on a modified social force model. A four-stage transfer model was proposed. A projection strategy was employed to calculate the social forces for inclined surfaces, and a schedule-line model was proposed to calculate the targets adaptively. Realistic simulations of escalator transfer activities were achieved. The results demonstrate that the spatial distribution of the congestion risks is inhomogeneous. A few areas contain clearly higher risks, and the congestion risk is higher in the transfer aisles than on the escalators. The congestion risk in the transfer aisle is influenced more by the average pedestrian speed than that of the escalators. Slower walkers in the transfer aisle may cause congestion, which is more serious when the escalator speed is faster than that of the pedestrians. Therefore, to reduce the congestion risk, the speed of the escalator should be set slower than the average speed of the pedestrians, and conductors can be employed to divert the traffic at the entrance, turns, and exit of the escalator.
Keywords: Congestion risk; Transfer behavior; Escalator; Simulation; Social force model (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114008826
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:420:y:2015:i:c:p:28-40
DOI: 10.1016/j.physa.2014.10.044
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().