Renormalization group solution of the Chutes & Ladder model
Lauren A. Ball,
Alfred C.K. Farris and
Stefan Boettcher
Physica A: Statistical Mechanics and its Applications, 2015, vol. 421, issue C, 171-179
Abstract:
We analyze a semi-infinite one-dimensional random walk process with a biased motion that is incremental in one direction and long-range in the other. On a network with a fixed hierarchy of long-range jumps, we find with exact renormalization group calculations that there is a dynamical transition between a localized adsorption phase and an anomalous diffusion phase in which the mean-square displacement exponent depends non-universally on the Bernoulli coin. We relate these results to similar findings of unconventional phase behavior in hierarchical networks.
Keywords: Random walks; Hierarchical networks; Renormalization group; Non-universality; Persistent walks; De-localization (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114009716
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:421:y:2015:i:c:p:171-179
DOI: 10.1016/j.physa.2014.11.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().