Some statistical equilibrium mechanics and stability properties of a class of two-dimensional Hamiltonian mean-field models
J.M. Maciel,
M.-C. Firpo and
M.A. Amato
Physica A: Statistical Mechanics and its Applications, 2015, vol. 424, issue C, 34-43
Abstract:
A two-dimensional class of mean-field models that may serve as a minimal model to study the properties of long-range systems in two space dimensions is considered. The statistical equilibrium mechanics is derived in the microcanonical ensemble using Monte Carlo simulations for different combinations of the coupling constants in the potential leading to fully repulsive, fully attractive and mixed attractive–repulsive potential along the Cartesian axis and diagonals. Then, having in mind potential realizations of long-range systems using cold atoms, the linear theory of this two-dimensional mean-field Hamiltonian models is derived in the low temperature limit.
Keywords: Long-range interacting systems; Mean-field models; Quasi-stationary states; Cold atoms; Magnetic traps; Laser cooling (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114010723
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:424:y:2015:i:c:p:34-43
DOI: 10.1016/j.physa.2014.12.030
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().