Piecewise aggregate representations and lower-bound distance functions for multivariate time series
Hailin Li
Physica A: Statistical Mechanics and its Applications, 2015, vol. 427, issue C, 10-25
Abstract:
Dimensionality reduction is one of the most important methods to improve the efficiency of the techniques that are applied to the field of multivariate time series data mining. Due to multivariate time series with the variable-based and time-based dimensions, the reduction techniques must take both of them into consideration. To achieve this goal, we use a center sequence to represent a multivariate time series so that the new sequence can be seen as a univariate time series. Thus two sophisticated piecewise aggregate representations, including piecewise aggregate approximation and symbolization applied to univariate time series, are used to further represent the extended sequence that is derived from the center one. Furthermore, some distance functions are designed to measure the similarity between two representations. Through being proven by some related mathematical analysis, the proposed functions are lower bound on Euclidean distance and dynamic time warping. In this way, false dismissals can be avoided when they are used to index the time series. In addition, multivariate time series with different lengths can be transformed into the extended sequences with equal length, and their corresponding distance functions can measure the similarity between two unequal-length multivariate time series. The experimental results demonstrate that the proposed methods can reduce the dimensionality, and their corresponding distance functions satisfy the lower-bound condition, which can speed up the calculation of similarity search and indexing in the multivariate time series datasets.
Keywords: Piecewise aggregate representation; Similarity measure; Lower bound function; Multivariate time series; Dynamic time warping (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115000825
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:427:y:2015:i:c:p:10-25
DOI: 10.1016/j.physa.2015.01.063
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().