Noise-tolerant model selection and parameter estimation for complex networks
Sadegh Aliakbary,
Sadegh Motallebi,
Sina Rashidian,
Jafar Habibi and
Ali Movaghar
Physica A: Statistical Mechanics and its Applications, 2015, vol. 427, issue C, 100-112
Abstract:
Real networks often exhibit nontrivial topological features that do not occur in random graphs. The need for synthesizing realistic networks has resulted in development of various network models. In this paper, we address the problem of selecting and calibrating the model that best fits a given target network. The existing model fitting approaches mostly suffer from sensitivity to network perturbations, lack of the parameter estimation component, dependency on the size of the networks, and low accuracy. To overcome these limitations, we considered a broad range of network features and employed machine learning techniques such as genetic algorithms, distance metric learning, nearest neighbor classification, and artificial neural networks. Our proposed method, which is named ModelFit, outperforms the state-of-the-art baselines with respect to accuracy and noise tolerance in different network datasets.
Keywords: Complex networks; Network models; Model selection; Parameter estimation; Machine learning; Social networks (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115001363
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:427:y:2015:i:c:p:100-112
DOI: 10.1016/j.physa.2015.02.032
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().