EconPapers    
Economics at your fingertips  
 

Multifractal characterization of protein contact networks

Enrico Maiorino, Lorenzo Livi, Alessandro Giuliani, Alireza Sadeghian and Antonello Rizzi

Physica A: Statistical Mechanics and its Applications, 2015, vol. 428, issue C, 302-313

Abstract: The multifractal detrended fluctuation analysis of time series is able to reveal the presence of long-range correlations and, at the same time, to characterize the self-similarity of the series. The rich information derivable from the characteristic exponents and the multifractal spectrum can be further analyzed to discover important insights into the underlying dynamical process. In this paper, we employ multifractal analysis techniques in the study of protein contact networks. To this end, initially a network is mapped to three different time series, each of which is generated by a stationary unbiased random walk. To capture the peculiarities of the networks at different levels, we accordingly consider three observables at each vertex: the degree, the clustering coefficient, and the closeness centrality. To compare the results with suitable references, we consider also instances of three well-known network models and two typical time series with pure monofractal and multifractal properties. The first result of notable interest is that time series associated to protein contact networks exhibit long-range correlations (strong persistence), which are consistent with signals in-between the typical monofractal and multifractal behavior. Successively, a suitable embedding of the multifractal spectra allows to focus on ensemble properties, which in turn gives us the possibility to make further observations regarding the considered networks. In particular, we highlight the different role that small and large fluctuations of the considered observables play in the characterization of the network topology.

Keywords: Multifractal analysis; Complex biological networks; Time series analysis; Random walk (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115001284
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:428:y:2015:i:c:p:302-313

DOI: 10.1016/j.physa.2015.02.026

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:428:y:2015:i:c:p:302-313