EconPapers    
Economics at your fingertips  
 

New analytical TEMOM solutions for a class of collision kernels in the theory of Brownian coagulation

Qing He, Alexander K. Shchekin and Ming-Liang Xie

Physica A: Statistical Mechanics and its Applications, 2015, vol. 428, issue C, 435-442

Abstract: New analytical solutions in the theory of the Brownian coagulation with a wide class of collision kernels have been found with using the Taylor-series expansion method of moments (TEMOM). It has been shown at different power exponents in the collision kernels from this class and at arbitrary initial conditions that the relative rates of changing zeroth and second moments of the particle volume distribution have the same long time behavior with power exponent −1, while the dimensionless particle moment related to the geometric standard deviation tends to the constant value which equals 2. The power exponent in the collision kernel in the class studied affects the time of approaching the self-preserving distribution, the smaller the value of the index, the longer time. It has also been shown that constant collision kernel gives for the moments in the Brownian coagulation the results which are very close to that in the continuum regime.

Keywords: Aggregation; TEMOM; Population balance equation; Brownian coagulation; Collision kernels (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115000709
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:428:y:2015:i:c:p:435-442

DOI: 10.1016/j.physa.2015.01.051

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:428:y:2015:i:c:p:435-442