Measuring social inequality with quantitative methodology: Analytical estimates and empirical data analysis by Gini and k indices
Jun-ichi Inoue,
Asim Ghosh,
Arnab Chatterjee and
Bikas K. Chakrabarti
Physica A: Statistical Mechanics and its Applications, 2015, vol. 429, issue C, 184-204
Abstract:
Social inequality manifested across different strata of human existence can be quantified in several ways. Here we compute non-entropic measures of inequality such as Lorenz curve, Gini index and the recently introduced k index analytically from known distribution functions. We characterize the distribution functions of different quantities such as votes, journal citations, city size, etc. with suitable fits, compute their inequality measures and compare with the analytical results. A single analytic function is often not sufficient to fit the entire range of the probability distribution of the empirical data, and fit better to two distinct functions with a single crossover point. Here we provide general formulas to calculate these inequality measures for the above cases. We attempt to specify the crossover point by minimizing the gap between empirical and analytical evaluations of measures. Regarding the k index as an ‘extra dimension’, both the lower and upper bounds of the Gini index are obtained as a function of the k index. This type of inequality relations among inequality indices might help us to check the validity of empirical and analytical evaluations of those indices.
Keywords: Social inequality; Gini and k-indices; Empirical data analysis; Mixtures of distributions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115001260
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:429:y:2015:i:c:p:184-204
DOI: 10.1016/j.physa.2015.01.082
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().