A fast algorithm for community detection in temporal network
Jialin He and
Duanbing Chen
Physica A: Statistical Mechanics and its Applications, 2015, vol. 429, issue C, 87-94
Abstract:
Many complex systems can be investigated using the framework of temporal networks, which consist of nodes and edges that vary in time. The community structure in temporal network contributes to the understanding of evolving process of entities in complex system. The traditional method on dynamic community detection for each time step is independent of that for other time steps. It has low efficiency for ignoring historic community information. In this paper, we present a fast algorithm for dynamic community detection in temporal network, which takes advantage of community information at previous time step and improves efficiency while maintaining the quality. Experimental studies on real and synthetic temporal networks show that the CPU running time of our method improves as much as 69% over traditional one.
Keywords: Complex systems; Temporal networks; Dynamic community; Community structure; Detection algorithm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115001922
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:429:y:2015:i:c:p:87-94
DOI: 10.1016/j.physa.2015.02.069
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().