Epidemic spreading driven by biased random walks
Cunlai Pu,
Siyuan Li and
Jian Yang
Physica A: Statistical Mechanics and its Applications, 2015, vol. 432, issue C, 230-239
Abstract:
Random walk is one of the basic mechanisms of many network-related applications. In this paper, we study the dynamics of epidemic spreading driven by biased random walks in complex networks. In our epidemic model, infected nodes send out infection packets by biased random walks to their neighbor nodes, and this causes the infection of susceptible nodes that receive the packets. Infected nodes recover from the infection at a constant rate λ, and will not be infected again after recovery. We obtain the largest instantaneous number of infected nodes and the largest number of ever-infected nodes respectively, by tuning the parameter α of the biased random walks. Simulation results on model and real-world networks show that spread of the epidemic becomes intense and widespread with increase of either delivery capacity of infected nodes, average node degree, or homogeneity of node degree distribution.
Keywords: Epidemic spreading; Biased random walks; Complex networks (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115002976
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:432:y:2015:i:c:p:230-239
DOI: 10.1016/j.physa.2015.03.035
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().