Phononic heat transfer through a one dimensional system subject to two sources of nonequilibrium
N. Beraha,
A. Soba,
R. Barreto and
M.F. Carusela
Physica A: Statistical Mechanics and its Applications, 2015, vol. 433, issue C, 9-16
Abstract:
We analyze the energy transport in a one dimensional chain composed by two Frenkel–Kontorova (FK) segments connected together by a time modulated coupling. The ends are immersed in two thermal reservoirs with oscillating temperatures. We observe a single and multiresonant heat transport depending on the regimes considered, with a crossover between a mechanical resonance and a thermodynamical resonance. The dynamical tuning between these two regimes requires the synergetic presence of both time dependent sources of nonequilibrium. In the single resonant regime we analyze a “red shifted” resonant frequency that is dependent on the size of the system.
Keywords: Transport processes; Heat conduction; FK lattices (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115002770
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:433:y:2015:i:c:p:9-16
DOI: 10.1016/j.physa.2015.03.024
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().