Estimation of connectivity measures in gappy time series
Georgios Papadopoulos and
D. Kugiumtzis
Physica A: Statistical Mechanics and its Applications, 2015, vol. 436, issue C, 387-398
Abstract:
A new method is proposed to compute connectivity measures on multivariate time series with gaps. Rather than removing or filling the gaps, the rows of the joint data matrix containing empty entries are removed and the calculations are done on the remainder matrix. The method, called measure adapted gap removal (MAGR), can be applied to any connectivity measure that uses a joint data matrix, such as cross correlation, cross mutual information and transfer entropy. MAGR is favorably compared using these three measures to a number of known gap-filling techniques, as well as the gap closure. The superiority of MAGR is illustrated on time series from synthetic systems and financial time series.
Keywords: Multivariate time series analysis; Connectivity measures; Gaps in time series; Transfer entropy (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115004471
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
Working Paper: Estimation of connectivity measures in gappy time series (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:436:y:2015:i:c:p:387-398
DOI: 10.1016/j.physa.2015.05.032
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().