On a connection between a class of q-deformed algebras and the Hausdorff derivative in a medium with fractal metric
J. Weberszpil,
Matheus Jatkoske Lazo and
J.A. Helayël-Neto
Physica A: Statistical Mechanics and its Applications, 2015, vol. 436, issue C, 399-404
Abstract:
Over the recent decades, diverse formalisms have emerged that are adopted to approach complex systems. Amongst those, we may quote the q-calculus in Tsallis’ version of Non-Extensive Statistics with its undeniable success whenever applied to a wide class of different systems; Kaniadakis’ approach, based on the compatibility between relativity and thermodynamics; Fractional Calculus (FC), that deals with the dynamics of anomalous transport and other natural phenomena, and also some local versions of FC that claim to be able to study fractal and multifractal spaces and to describe dynamics in these spaces by means of fractional differential equations.
Keywords: Hausdorff derivative; Fractal; Local fractional calculus; q-deformed algebra; k-deformed algebra (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115004781
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:436:y:2015:i:c:p:399-404
DOI: 10.1016/j.physa.2015.05.063
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().