Stochastic model of self-driven two-species objects inspired by particular aspects of a pedestrian dynamics
Roberto da Silva,
Agenor Hentz and
Alexandre Alves
Physica A: Statistical Mechanics and its Applications, 2015, vol. 437, issue C, 139-148
Abstract:
In this work we propose a model to describe the fluctuations of self-driven objects (species A) walking against a crowd of particles in the opposite direction (species B) in order to simulate the spatial properties of the particle distribution from a stochastic point of view. Driven by concepts from pedestrian dynamics, in a particular regime known as stop-and-go waves, we propose a particular single-biased random walk (SBRW). This setup is modeled both via partial differential equations (PDE) and by using a probabilistic cellular automaton (PCA) method. The problem is non-interacting until the opposite particles visit the same cell of the target particles, which generates delays on the crossing time that depends on the concentration of particles of opposite species per cell. We analyzed the fluctuations on the position of particles and our results show a non-regular propagation characterized by long-tailed and asymmetric distributions which are better fitted by some chromatograph distributions found in the literature. We also show that effects of the crowd of particles in this situation are able to generate a pattern where we observe a small decrease of the target particle dispersion followed by an increase, differently from the observed straightforward non-interacting case. For a particular initial condition we present an interesting solution via constant density approximation (CDA).
Keywords: Stochastic model for self-driven objects; Non-linear partial differential equations; Probabilistic cellular automaton; Non-linear fits (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115005269
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:437:y:2015:i:c:p:139-148
DOI: 10.1016/j.physa.2015.05.104
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().