EconPapers    
Economics at your fingertips  
 

Peridynamic theory of solids from the perspective of classical statistical mechanics

R. Rahman and J.T. Foster

Physica A: Statistical Mechanics and its Applications, 2015, vol. 437, issue C, 162-183

Abstract: In this paper the classical statistical mechanics has been explored in order to develop statistical mechanical framework for peridynamics. Peridynamic equation of motion is known as upscaled Newton’s equation. The peridynamic system consists of finite number of nonlocally interacting particles at nano and meso scales. This particle representation of peridynamics can be treated in terms of classical statistical mechanics. Hence, in this work the phase space is constructed based on the PD particle from their evolving momentum pi and positions xi. The statistical ensembles are derived by defining appropriate partition functions. The algorithms for NVE and NPH implemented in the classical molecular dynamics are revisited for equilibrium peridynamic models. The current work introduces Langevin dynamics to the peridynamic theory through fluctuation–dissipation principle. This introduces a heat bath to the peridynamic system which eliminates the ambiguity with the role of temperature in a peridynamic system. Finally, it was seen that the homogenization of a peridynamic model with finite number of particles approaches to a conventional continuum model. The upscaled non-equilibrium peridynamics has potential applications in modeling wide variety of multiscale–multiphysics problems from nano to macro scale or vice versa.

Keywords: Molecular dynamics; Peridynamics; Statistical mechanics (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711500521X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:437:y:2015:i:c:p:162-183

DOI: 10.1016/j.physa.2015.05.099

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:162-183