Lattice fractional diffusion equation in terms of a Riesz–Caputo difference
Guo-Cheng Wu,
Dumitru Baleanu,
Zhen-Guo Deng and
Sheng-Da Zeng
Physica A: Statistical Mechanics and its Applications, 2015, vol. 438, issue C, 335-339
Abstract:
A fractional difference is defined by the use of the right and the left Caputo fractional differences. The definition is a two-sided operator of Riesz type and introduces back and forward memory effects in space difference. Then, a fractional difference equation method is suggested for anomalous diffusion in discrete finite domains. A lattice fractional diffusion equation is proposed and the numerical simulation of the diffusion process is discussed for various difference orders. The result shows that the Riesz difference model is particularly suitable for modeling complicated dynamical behaviors on discrete media.
Keywords: Discrete fractional calculus; Riesz–Caputo difference; Fractional partial difference equations (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115005774
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:438:y:2015:i:c:p:335-339
DOI: 10.1016/j.physa.2015.06.024
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().