Performance analysis of an interacting quantum dot heat engine with an external applied magnetic field
Yuan Wang,
Yanchao Zhang,
Chuankun Huang and
Jincan Chen
Physica A: Statistical Mechanics and its Applications, 2015, vol. 438, issue C, 586-594
Abstract:
A general model of a single orbital interacting quantum dot embed into two metal leads is established, in which an external applied magnetic field is considered and a linear fade of the Coulomb energy resulting from the energy level splitting is introduced. The occupation probabilities of quantum states are determined by the master equation under the steady state condition. The expressions of matter fluxes, heat fluxes, power output, and efficiency are derived. The effects of both the magnetic field and energy level on the performance are discussed. The maximum power output and efficiency are calculated. The optimal regions of the energy level and magnetic field are determined. Some important conclusions in literature can be directly deduced under the different extreme conditions of the present model.
Keywords: Thermoelectric device; Zeeman split; Interactive quantum dot; Master equation; Parametric optimum design (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115005737
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:438:y:2015:i:c:p:586-594
DOI: 10.1016/j.physa.2015.06.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().