Congestion detection of pedestrians using the velocity entropy: A case study of Love Parade 2010 disaster
Lida Huang,
Tao Chen,
Yan Wang and
Hongyong Yuan
Physica A: Statistical Mechanics and its Applications, 2015, vol. 440, issue C, 200-209
Abstract:
Gatherings of large human crowds often result in crowd disasters such as the Love Parade Disaster in Duisburg, Germany on July 24, 2010. To avoid these tragedies, video surveillance and early warning are becoming more and more significant. In this paper, the velocity entropy is first defined as the criterion for congestion detection, which represents the motion magnitude distribution and the motion direction distribution simultaneously. Then the detection method is verified by the simulation data based on AnyLogic software. To test the generalization performance of this method, video recordings of a real-world case, the Love Parade disaster, are also used in the experiments. The velocity histograms of the foreground object in the videos are extracted by the Gaussian Mixture Model (GMM) and optical flow computation. With a sequential change-point detection algorithm, the velocity entropy can be applied to detect congestions of the Love Parade festival. It turned out that without recognizing and tracking individual pedestrian, our method can detect abnormal crowd behaviors in real-time.
Keywords: Congestion detection; Crowd analysis; Video surveillance; Velocity entropy; Love Parade disaster (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115006688
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:440:y:2015:i:c:p:200-209
DOI: 10.1016/j.physa.2015.08.013
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().