Financial technical indicator based on chaotic bagging predictors for adaptive stock selection in Japanese and American markets
Tomoya Suzuki and
Yuushi Ohkura
Physica A: Statistical Mechanics and its Applications, 2016, vol. 442, issue C, 50-66
Abstract:
In order to examine the predictability and profitability of financial markets, we introduce three ideas to improve the traditional technical analysis to detect investment timings more quickly. Firstly, a nonlinear prediction model is considered as an effective way to enhance this detection power by learning complex behavioral patterns hidden in financial markets. Secondly, the bagging algorithm can be applied to quantify the confidence in predictions and compose new technical indicators. Thirdly, we also introduce how to select more profitable stocks to improve investment performance by the two-step selection: the first step selects more predictable stocks during the learning period, and then the second step adaptively and dynamically selects the most confident stock showing the most significant technical signal in each investment. Finally, some investment simulations based on real financial data show that these ideas are successful in overcoming complex financial markets.
Keywords: Technical analysis; Nonlinear prediction; Ensemble learning; Econophysics (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115007074
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:442:y:2016:i:c:p:50-66
DOI: 10.1016/j.physa.2015.08.042
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().