A practical numerical scheme for the ternary Cahn–Hilliard system with a logarithmic free energy
Darae Jeong and
Junseok Kim
Physica A: Statistical Mechanics and its Applications, 2016, vol. 442, issue C, 510-522
Abstract:
We consider a practically stable finite difference method for the ternary Cahn–Hilliard system with a logarithmic free energy modeling the phase separation of a three-component mixture. The numerical scheme is based on a linear unconditionally gradient stable scheme by Eyre and is solved by an efficient and accurate multigrid method. The logarithmic function has a singularity at zero. To remove the singularity, we regularize the function near zero by using a quadratic polynomial approximation. We perform a convergence test, a linear stability analysis, and a robustness test of the ternary Cahn–Hilliard equation. We observe that our numerical solutions are convergent, consistent with the exact solutions of linear stability analysis, and stable with practically large enough time steps. Using the proposed numerical scheme, we also study the temporal evolution of morphology patterns during phase separation in one-, two-, and three-dimensional spaces.
Keywords: Ternary Cahn–Hilliard; Logarithmic free energy; Multigrid method; Phase separation; Finite difference method (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115007748
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:442:y:2016:i:c:p:510-522
DOI: 10.1016/j.physa.2015.09.038
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().