Compositional segmentation and complexity measurement in stock indices
Haifeng Wang,
Pengjian Shang and
Jianan Xia
Physica A: Statistical Mechanics and its Applications, 2016, vol. 442, issue C, 67-73
Abstract:
In this paper, we introduce a complexity measure based on the entropic segmentation called sequence compositional complexity (SCC) into the analysis of financial time series. SCC was first used to deal directly with the complex heterogeneity in nonstationary DNA sequences. We already know that SCC was found to be higher in sequences with long-range correlation than those with low long-range correlation, especially in the DNA sequences. Now, we introduce this method into financial index data, subsequently, we find that the values of SCC of some mature stock indices, such as S&P500 (simplified with S&P in the following) and HSI, are likely to be lower than the SCC value of Chinese index data (such as SSE). What is more, we find that, if we classify the indices with the method of SCC, the financial market of Hong Kong has more similarities with mature foreign markets than Chinese ones. So we believe that a good correspondence is found between the SCC of the index sequence and the complexity of the market involved.
Keywords: Sequence compositional complexity; Entropic segmentation; Financial systems; Long-range correlation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115007220
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:442:y:2016:i:c:p:67-73
DOI: 10.1016/j.physa.2015.08.057
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().