Social consensus and tipping points with opinion inertia
C. Doyle,
S. Sreenivasan,
B.K. Szymanski and
G. Korniss
Physica A: Statistical Mechanics and its Applications, 2016, vol. 443, issue C, 316-323
Abstract:
When opinions, behaviors or ideas diffuse within a population, some are invariably more sticky than others. The stickier the opinion, behavior or idea, the greater is an individual’s inertia to replace it with an alternative. Here we study the effect of stickiness of opinions in a two-opinion model, where individuals change their opinion only after a certain number of consecutive encounters with the alternative opinion. Assuming that one opinion has a fixed stickiness, we investigate how the critical size of the competing opinion required to tip over the entire population varies as a function of the competing opinion’s stickiness. We analyze this scenario for the case of a complete-graph topology through simulations, and through a semi-analytical approach which yields an upper bound for the critical minority size. We present analogous simulation results for the case of the Erdős–Rényi random network. Finally, we investigate the coarsening properties of sticky opinion spreading on two-dimensional lattices, and show that the presence of stickiness gives rise to an effective surface tension that causes the coarsening behavior to become curvature-driven.
Keywords: Opinion dynamics; Social networks; Influencing; Tipping points; Opinion inertia (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115008171
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:443:y:2016:i:c:p:316-323
DOI: 10.1016/j.physa.2015.09.081
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().