Homogeneous cooling state of frictionless rod particles
S.M. Rubio-Largo,
F. Alonso-Marroquin,
T. Weinhart,
S. Luding and
R.C. Hidalgo
Physica A: Statistical Mechanics and its Applications, 2016, vol. 443, issue C, 477-485
Abstract:
In this work, we report some theoretical results on granular gases consisting of frictionless 3D rods with low energy dissipation. We performed simulations on the temporal evolution of soft spherocylinders, using a molecular dynamics algorithm implemented on GPU architecture. A homogeneous cooling state for rods, where the time dependence of the system’s intensive variables occurs only through a global granular temperature, has been identified. We have found a homogeneous cooling process, which is in excellent agreement with Haff’s law, when using an adequate rescaling time τ(ξ), the value of which depends on the particle elongation ξ and the restitution coefficient. It was further found that scaled particle velocity distributions remain approximately Gaussian regardless of the particle shape. Similarly to a system of ellipsoids, energy equipartition between rotational and translational degrees of freedom was better satisfied as one gets closer to the elastic limit. Taking advantage of scaling properties, we have numerically determined the general functionality of the magnitude Dc(ξ), which describes the efficiency of the energy interchange between rotational and translational degrees of freedom, as well as its dependence on particle shape. We have detected a range of particle elongations (1.5<ξ<4.0), where the average energy transfer between the rotational and translational degrees of freedom results greater for spherocylinders than for homogeneous ellipsoids with the same aspect ratio.
Keywords: Granular systems; Homogeneous cooling; Rods; Numerical methods (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115007827
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:443:y:2016:i:c:p:477-485
DOI: 10.1016/j.physa.2015.09.046
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().