EconPapers    
Economics at your fingertips  
 

Promotion and resignation in employee networks

Jia Yuan, Qian-Ming Zhang, Jian Gao, Linyan Zhang, Xue-Song Wan, Xiao-Jun Yu and Tao Zhou

Physica A: Statistical Mechanics and its Applications, 2016, vol. 444, issue C, 442-447

Abstract: Enterprises have put more and more emphasis on data analysis so as to obtain effective management advices. Managers and researchers are trying to dig out the major factors that lead to employees’ promotion and resignation. Most previous analyses are based on questionnaire survey, which usually consists of a small fraction of samples and contains biases caused by psychological defense. In this paper, we successfully collect a data set consisting of all the employees’ work-related interactions (action network, AN for short) and online social connections (social network, SN for short) of a company, which inspires us to reveal the correlations between structural features and employees’ career development, namely promotion and resignation. Through statistical analysis, we show that the structural features of both AN and SN are correlated and predictive to employees’ promotion and resignation, and the AN has higher correlation and predictability. More specifically, the in-degree in AN is the most relevant indicator for promotion, while the k-shell index in AN and in-degree in SN are both very predictive to resignation. Our results provide a novel and actionable understanding of enterprise management and suggest that to enhance the interplays among employees, no matter work-related or social interplays, can be helpful to reduce staffs’ turnover risk.

Keywords: Complex networks; Employee networks; Human resource; Promotion; Resignation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115008857
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:444:y:2016:i:c:p:442-447

DOI: 10.1016/j.physa.2015.10.039

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:442-447