EconPapers    
Economics at your fingertips  
 

A scanning method for detecting clustering pattern of both attribute and structure in social networks

Tai-Chi Wang and Frederick Kin Hing Phoa

Physica A: Statistical Mechanics and its Applications, 2016, vol. 445, issue C, 295-309

Abstract: Community/cluster is one of the most important features in social networks. Many cluster detection methods were proposed to identify such an important pattern, but few were able to identify the statistical significance of the clusters by considering the likelihood of network structure and its attributes. Based on the definition of clustering, we propose a scanning method, originated from analyzing spatial data, for identifying clusters in social networks. Since the properties of network data are more complicated than those of spatial data, we verify our method’s feasibility via simulation studies. The results show that the detection powers are affected by cluster sizes and connection probabilities. According to our simulation results, the detection accuracy of structure clusters and both structure and attribute clusters detected by our proposed method is better than that of other methods in most of our simulation cases. In addition, we apply our proposed method to some empirical data to identify statistically significant clusters.

Keywords: Social networks; Community/cluster detection; Scanning window; Scan statistic; Structure and attribute cluster; Statistical significance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115008559
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:445:y:2016:i:c:p:295-309

DOI: 10.1016/j.physa.2015.10.009

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:445:y:2016:i:c:p:295-309