EconPapers    
Economics at your fingertips  
 

Mining the key predictors for event outbreaks in social networks

Chengqi Yi, Yuanyuan Bao and Yibo Xue

Physica A: Statistical Mechanics and its Applications, 2016, vol. 447, issue C, 247-260

Abstract: It will be beneficial to devise a method to predict a so-called event outbreak. Existing works mainly focus on exploring effective methods for improving the accuracy of predictions, while ignoring the underlying causes: What makes event go viral? What factors that significantly influence the prediction of an event outbreak in social networks? In this paper, we proposed a novel definition for an event outbreak, taking into account the structural changes to a network during the propagation of content. In addition, we investigated features that were sensitive to predicting an event outbreak. In order to investigate the universality of these features at different stages of an event, we split the entire lifecycle of an event into 20 equal segments according to the proportion of the propagation time. We extracted 44 features, including features related to content, users, structure, and time, from each segment of the event. Based on these features, we proposed a prediction method using supervised classification algorithms to predict event outbreaks. Experimental results indicate that, as time goes by, our method is highly accurate, with a precision rate ranging from 79% to 97% and a recall rate ranging from 74% to 97%. In addition, after applying a feature-selection algorithm, the top five selected features can considerably improve the accuracy of the prediction. Data-driven experimental results show that the entropy of the eigenvector centrality, the entropy of the PageRank, the standard deviation of the betweenness centrality, the proportion of re-shares without content, and the average path length are the key predictors for an event outbreak. Our findings are especially useful for further exploring the intrinsic characteristics of outbreak prediction.

Keywords: Social network; Outbreak prediction; Information dissemination; Predictors; Data-driven (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115010468
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:447:y:2016:i:c:p:247-260

DOI: 10.1016/j.physa.2015.12.019

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:447:y:2016:i:c:p:247-260