Random Ising antiferromagnet on Bethe-like lattices with triangular loops
Terufumi Yokota
Physica A: Statistical Mechanics and its Applications, 2016, vol. 447, issue C, 270-275
Abstract:
Phase diagrams for a random Ising antiferromagnet on Bethe-like lattices with triangular loops are obtained. Triangular loops cause strong geometrical frustration for the Ising antiferromagnet. Spin glass states appear by introducing randomness in the interaction between Ising spins. The random Ising antiferromagnet is studied by the replica method using global order parameter. The phase diagrams are compared with those for the corresponding random Ising ferromagnet to see the effects of the geometrical frustration. Antiferromagnetic phase does not appear for M≤4 where M is the number of the corner sharing triangles on the Bethe-like lattices. In these cases, spin glass phase appears with a reentrant behavior. Spin glass phase in the random antiferromagnet appears for much weaker randomness than that in the corresponding random ferromagnet.
Keywords: Spin glasses; Phase diagrams; Triangular loop; Antiferromagnet (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115010808
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:447:y:2016:i:c:p:270-275
DOI: 10.1016/j.physa.2015.12.052
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().