EconPapers    
Economics at your fingertips  
 

A general method of community detection by identifying community centers with affinity propagation

Wei-Feng Guo and Shao-Wu Zhang

Physica A: Statistical Mechanics and its Applications, 2016, vol. 447, issue C, 508-519

Abstract: Detection of community structures is beneficial to analyzing the structures and properties of networks. It is of theoretical interest and practical significance in modern science. So far, a large number of algorithms have been proposed to detect community structures in complex networks, but most of them are suitable for a specific network structure. In this paper, a novel method (called CDMIC) is proposed to detect the communities in un-weighted, weighted, un-directed, directed and signed networks by constructing a dissimilarity distance matrix of network and identifying community centers with maximizing modularity. For a given network, we first estimate the distance between all pairs of nodes for constructing the dissimilarity distance matrix of the network. Then, this distance matrix is input to the affinity propagation (AP) algorithm to extract a candidate center set of community. Thirdly, we rank these centers in descending order according to the sum of their availability and responsibility. Finally, we determine the community structure by selecting the center subset from the candidate center set in an incremental manner to make the modularity maximization. On three real-world networks and some synthetic networks, experimental results show that our CDMIC method has higher performance in terms of classification accuracy and normalized mutual information (NMI), and ability to tolerate the resolution limitation.

Keywords: Dissimilarity distance matrix; Centers; Community; Modularity; Affinity propagation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115010651
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:447:y:2016:i:c:p:508-519

DOI: 10.1016/j.physa.2015.12.037

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:447:y:2016:i:c:p:508-519