The scaling of attention networks
Cheng-Jun Wang and
Lingfei Wu
Physica A: Statistical Mechanics and its Applications, 2016, vol. 448, issue C, 196-204
Abstract:
We use clicks as a proxy of collective attention and construct networks to study the temporal dynamics of attention. In particular we collect the browsing records of millions of users on 1000 Web forums in two months. In the constructed networks, nodes are threads and edges represent the switch of users between threads in an hour. The investigated network properties include the number of threads N, the number of users UV, and the number of clicks, PV. We find scaling functions PV∼UVθ1, PV∼Nθ3, and UV∼Nθ2, in which the scaling exponents are always greater than 1. This means that (1) the studied networks maintain a self-similar flow structure in time, i.e., large networks are simply the scale-up versions of small networks; and (2) large networks are more “productive”, in the sense that an average user would generate more clicks in the larger systems. We propose a revised version of Zipf’s law to quantify the time-invariant flow structure of attention networks and relate it to the observed scaling properties. We also demonstrate the applied consequences of our research: forum-classification based on scaling properties.
Keywords: Attention dynamics; Complex networks; Online behavior; Scaling; Power law (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115011097
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:448:y:2016:i:c:p:196-204
DOI: 10.1016/j.physa.2015.12.081
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().