Controlling dissociation by trapping trajectories in highly energetic states
A.K. de Almeida ,
R. Egydio de Carvalho and
E.F. de Lima
Physica A: Statistical Mechanics and its Applications, 2016, vol. 449, issue C, 101-110
Abstract:
We consider the non-linear dynamics of a polar diatomic molecule under the action of laser–field interactions and in the presence of a dissipation mechanism, described by the classical damped and driven one-dimensional Morse oscillator. In the absence of laser fields and dissipation, the phase space consists of a negative-energy bound region and a positive-energy dissociative region. Laser–molecule interaction changes the phase space allowing transitions from the bound to the dissociative region through chaotic routes. We show that for a spatially dependent dipole force, resonances with positive energies allow the trapping of trajectories in pseudo-bound states. We also show that, upon the introduction of dissipation, there exist non-trivial point attractors as well as chaotic attractors, which capture the trajectories in pseudo-bound states. Consequently, in addition to the parameters associated with the laser–molecule interaction, the amplitude of the dissipation acts as a control parameter of the photo-dissociation dynamics.
Keywords: Morse potential; Non-linear resonance; Dissociation; Dissipation; Attractors (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115011462
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:449:y:2016:i:c:p:101-110
DOI: 10.1016/j.physa.2015.12.109
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().