Capture and sequestration of CO2 in the interlayer space of hydrated calcium Montmorillonite clay under various geological burial depth
Wenyi Yang and
A. Zaoui
Physica A: Statistical Mechanics and its Applications, 2016, vol. 449, issue C, 416-425
Abstract:
We perform, at nanoscale level, the structure and dynamics of carbon dioxide molecules in hydrated Ca-montmorillonite clays. The swelling behaviour of hydrated Wyoming-type Montmorillonite including CO2 molecules and counterions is presented and analysed. In addition, the atom density profile, diffusion behaviours and radial distribution functions of CO2, interlayer water molecules and Calcium ions have been investigated at different geological burial depth of 0 km, 3 km and 6 km, which correspond to various temperature and pressure of simulation conditions. Furthermore, the influence of different hydration state on the dynamical behaviours of carbon dioxide is also explained. The calculated self-diffusion coefficient shows that the carbon dioxide species diffuse more freely with the increase of depth and water content. We also found that the presence of interlayer CO2 inhibits the diffusion of all the mobile species. These results mainly show that the hydrated clay system is an appropriate space capable of absorbing CO2 molecules.
Keywords: CO2; Clay; Water content; Geological burial depth; Monte Carlo; Molecular dynamics (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115010596
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:449:y:2016:i:c:p:416-425
DOI: 10.1016/j.physa.2015.12.032
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().