Theoretical description of slow non-monotonic relaxation processes in Al–Y melts
M.G. Vasin,
S.G. Menshikova and
M.D. Ivshin
Physica A: Statistical Mechanics and its Applications, 2016, vol. 449, issue C, 64-73
Abstract:
The slow non-monotonic relaxation processes, which have been recently fixed in Al–Y melts, are described theoretically. The theoretical description is based on the Cahn–Hilliard theory and functional methods of non-equilibrium dynamics. In terms of the suggested approach the reasons of this relaxation kinetics are non-linearity of the system near to the liquidus line, which sharply increases with Y concentration, and strong initial heterogeneity of the melt on the concentration of Y atoms. According to our analysis one can conclude that the non-monotonic temporal dependence of viscosity is caused by the Ostwald ripening processes in the rich in yttrium areas.
Keywords: Relaxation; Glass-forming melts; Non-equilibrium dynamics (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437115011139
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:449:y:2016:i:c:p:64-73
DOI: 10.1016/j.physa.2015.12.085
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().