Bosonic binary mixtures with Josephson-type interactions
Valéria de C. Souza,
Zochil González Arenas,
Daniel G. Barci and
Cesar A. Linhares
Physica A: Statistical Mechanics and its Applications, 2016, vol. 450, issue C, 134-147
Abstract:
Motivated by experiments in bosonic mixtures composed of a single element in two different hyperfine states, we study bosonic binary mixtures in the presence of Josephson interactions between species. We focus on a particular model with O(2) isospin symmetry, lifted by an imbalanced population parametrized by a Rabi frequency, ΩR, and a detuning, ν, which couples the phases of both species. We have studied the model at mean-field approximation plus Gaussian fluctuations. We have found that both species simultaneously condensate below a critical temperature Tc and the relative phases are locked by the applied laser phase, α. Moreover, the condensate fractions are strongly dependent on the ratio ΩR/∣ν∣ that is not affected by thermal fluctuations.
Keywords: Bose–Einstein condensation; Effective potential; Finite temperature field theory; Binary mixtures (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116000364
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:450:y:2016:i:c:p:134-147
DOI: 10.1016/j.physa.2015.12.146
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().