EconPapers    
Economics at your fingertips  
 

Irreversibility and complex network behavior of stream flow fluctuations

Francesco Serinaldi and Chris G. Kilsby

Physica A: Statistical Mechanics and its Applications, 2016, vol. 450, issue C, 585-600

Abstract: Exploiting the duality between time series and networks, directed horizontal visibility graphs (DHVGs) are used to perform an unprecedented analysis of the dynamics of stream flow fluctuations with focus on time irreversibility and long range dependence. The analysis relies on a large quality-controlled data set consisting of 699 daily time series recorded in the continental United States (CONUS) that are not affected by human activity and primarily reflects meteorological conditions. DHVGs allow a clear visualization and quantification of time irreversibility of flow dynamics, which can be interpreted as a signature of nonlinearity, and long range dependence resulting from the interaction of atmospheric, surface and underground processes acting at multiple spatio-temporal scales. Irreversibility is explored by mapping the time series into ingoing, outgoing, and undirected graphs and comparing the corresponding degree distributions. Using surrogate data preserving up to the second order linear temporal dependence properties of the observed series, DHVGs highlight the additional complexity introduced by nonlinearity into flow fluctuation dynamics. We show that the degree distributions do not decay exponentially as expected, but tend to follow a subexponential behavior, even though sampling uncertainty does not allow a clear distinction between apparent or true power law decay. These results confirm that the complexity of stream flow dynamics goes beyond a linear representation involving for instance the combination of linear processes with short and long range dependence, and requires modeling strategies accounting for temporal asymmetry and nonlinearity.

Keywords: Visibility graphs; Stream flow; Network analysis; Nonlinearity; Irreversibility; US rivers (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116000820
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:450:y:2016:i:c:p:585-600

DOI: 10.1016/j.physa.2016.01.043

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:585-600