Modeling of knowledge transmission by considering the level of forgetfulness in complex networks
Bin Cao,
Shui-hua Han and
Zhen Jin
Physica A: Statistical Mechanics and its Applications, 2016, vol. 451, issue C, 277-287
Abstract:
In this study, we establish a general model by considering the level of forgetfulness during knowledge transmission in complex networks, where the level of forgetfulness depends mainly on the number in a crowd who possess knowledge, while the saturated incidence is also considered. In theory, we analyze the stability of the equilibrium points and the transmission threshold R0 is also given. If R0>1, then knowledge can be transmitted, but if not, it will become completely extinct. In addition, we performed some numerical simulations to verify the reasonability of the theoretical analysis. The results of the simulations also suggest that the proportion of the crowd with knowledge will be increased under a better cultural atmosphere.
Keywords: Level of forgetfulness; Knowledge transmission; Ordinary differential system; Transmission threshold (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116000273
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:451:y:2016:i:c:p:277-287
DOI: 10.1016/j.physa.2015.12.137
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().