Measuring mixing patterns in complex networks by Spearman rank correlation coefficient
Wen-Yao Zhang,
Zong-Wen Wei,
Bing-Hong Wang and
Xiao-Pu Han
Physica A: Statistical Mechanics and its Applications, 2016, vol. 451, issue C, 440-450
Abstract:
In this paper, we utilize Spearman rank correlation coefficient to measure mixing patterns in complex networks. Compared with the widely used Pearson coefficient, Spearman coefficient is rank-based, nonparametric, and size-independent. Thus it is more effective to assess linking patterns of diverse networks, especially for large-size networks. We demonstrate this point by testing a variety of empirical and artificial networks. Moreover, we show that normalized Spearman ranks of stubs are subject to an interesting linear rule where the correlation coefficient is just the Spearman coefficient. This compelling linear relationship allows us to directly produce networks with any prescribed Spearman coefficient. Our method apparently has an edge over the well known uncorrelated configuration model.
Keywords: Spearman coefficient; Mixing patterns; Complex networks (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116001023
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:451:y:2016:i:c:p:440-450
DOI: 10.1016/j.physa.2016.01.056
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().