Evaluating the importance of nodes in complex networks
Jun Liu,
Qingyu Xiong,
Weiren Shi,
Xin Shi and
Kai Wang
Physica A: Statistical Mechanics and its Applications, 2016, vol. 452, issue C, 209-219
Abstract:
Evaluating the importance of nodes for complex networks is of great significance to the research of survivability and robusticity of networks. This paper proposes an effective ranking method based on degree value and the importance of lines. It can well identify the importance of bridge nodes with lower computational complexity. Firstly, the properties of nodes that are connected to a line are used to compute the importance of the line. Then, the contribution of nodes to the importance of lines is calculated. Finally, degree of nodes and the contribution of nodes to the importance of lines are considered to rank the importance of nodes. Five real networks are used as test data. The experimental results show that our method can effectively evaluate the importance of nodes for complex networks.
Keywords: Complex networks; Node importance; Line importance; Efficiency of network (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116002156
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:452:y:2016:i:c:p:209-219
DOI: 10.1016/j.physa.2016.02.049
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().