Temperature-dependence of wetting properties of carbon nanotubes
Fatemeh Ebrahimi and
Melika Gholamian Moghaddam
Physica A: Statistical Mechanics and its Applications, 2016, vol. 453, issue C, 271-277
Abstract:
We have carried out molecular dynamics simulations to study the spontaneous imbibition of water into a single-wall carbon nanotube (CNT) at various temperatures, ranging from 270 K to 370 K. The simulations indicate that by increasing the temperature, the rate of mass uptake improves as well. Considering the end-loss friction as the main source of energy dissipation and ignoring the inertial effect on the nano-scale transport, we derive a simple expression that relates the CNT’s wettability to the fluid viscosity and the rate of imbibition over the temperature range that we study. Our results also indicate that the increase in the wettability of the CNT, and the reduction in the viscosity of water at higher temperatures cause enhancement of water uptake into the nanotube. They also enable us to estimate the wetting transition temperature for TIP3P model of water in the CNTs.
Keywords: Carbon nanotubes; TIP3P water; Imbibition parameter; Entrance friction; Wetting transition (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711600203X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:453:y:2016:i:c:p:271-277
DOI: 10.1016/j.physa.2016.02.037
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().