Characterizing the topological and controllability features of U.S. power transmission networks
Jian Li,
Leonardo Dueñas-Osorio,
Changkun Chen,
Benjamin Berryhill and
Alireza Yazdani
Physica A: Statistical Mechanics and its Applications, 2016, vol. 453, issue C, 84-98
Abstract:
Understanding the controllability of complex networks continues to gain traction across disciplinary fields, including the exploration of infrastructure systems such as power grids. Through topological principles, this paper investigates the controllability features of an ensemble of 58 U.S. city-level power transmission networks in seven U.S. states. To perform structural controllability analyses, the topological characteristics of the ensemble of networks are first quantified, including degree, shortest path length, clustering coefficient, meshedness and betweenness centrality, as well as the uncertainty associated with these and related properties. Then, the paper focuses on the controllability features of complex networks so as to detect the minimal sets of driver nodes to possibly control the networks given system linearity assumptions. Accordingly, a node is critical, intermittent or redundant if it acts as a driver node in all, some, or none of the potentially controllable system configurations. Moreover, this paper constructs a new methodology to quantify the probability of being a driver node among the intermittent nodes, and reveals the controllability importance of system components. Results show that a small proportion of driver nodes can provide the conditions for controlling the slow dynamics of entire power transmission networks from a topological perspective, despite variations in network sizes and configurations. This paper also reveals that the driver nodes tend to avoid high degree nodes and high triangulation sub-graph nodes as well as high betweenness centrality nodes. The identification of topological differences for different categories of nodes (critical, intermittent or redundant) could help researchers and utilities understand the conditions for future functional controllability of power networks while improving their reliability and resilience as well as facilitating their transition into smart grid systems.
Keywords: Power transmission networks ensembles; Structural controllability; Driver nodes; Redundant nodes; Intermittent nodes; Smart infrastructure systems (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116001515
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:453:y:2016:i:c:p:84-98
DOI: 10.1016/j.physa.2016.01.087
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().