EconPapers    
Economics at your fingertips  
 

Link prediction based on path entropy

Zhongqi Xu, Cunlai Pu and Jian Yang

Physica A: Statistical Mechanics and its Applications, 2016, vol. 456, issue C, 294-301

Abstract: Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, first we study the information entropy or uncertainty of a path using the information theory. After that, we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which considers the information entropies of shortest paths between node pairs with penalization to long paths. Empirical experiments demonstrate that PE index outperforms the mainstream of link predictors.

Keywords: Link prediction; Complex networks; Information entropy (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116300899
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:456:y:2016:i:c:p:294-301

DOI: 10.1016/j.physa.2016.03.091

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:294-301